文件大小:7.67 MB
文件类型:pdf
发布时间:2022-12-31 13:40:28
需资源分:2
下载次数:0
Tag:人工智能 结构学习
::资源简介::
人工智能中的深度结构学习
前折页
书名页
版权页
译者序
目录
1 引言
1.1 如何训练深度结构
1.2 中间层表示:在不同的任务中共享特征和抽象
1.3 学习人工智能的必经之路
1.4 本书大纲
2 深度结构的理论优势
2.1 计算复杂性
2.2 一些非正式的论证
3 局部与非局部泛化性
3.1 局部模板匹配的局限性
3.2 学习分布式表示
4 具有深度结构的神经网络
4.1 多层神经网络
4.2 训练深度神经网络的挑战
4.3 深度结构的无监督学习
4.4 深度生成结构
4.5 卷积神经网络
4.6 自动编码器
5 能量模型和玻尔兹曼机
5.1 能量模型和专家乘积系统
5.2 玻尔兹曼机
5.3 受限玻尔兹曼机
5.4 对比散度
6 深层结构的逐层贪心训练
6.1 深度置信网络的逐层训练
6.2 堆叠自动编码器训练
6.3 半监督与部分监督训练
7 受限玻尔兹曼机和自动编码器的变体
7.1 自动编码器和受限玻尔兹曼机的稀疏化表示
7.2 降噪自动编码器
7.3 层内连接
7.4 条件RBM和时序RBM
7.5 分解式RBM
7.6 受限玻尔兹曼机和对比散度的推广
8 DBN各层联合优化中的随机变分边界
8.1 将RBM展开为无限有向置信网络
8.2 逐层贪心训练的变分证明
8.3 所有层的联合无监督训练
9 展望
9.1 全局优化策略
9.2 无监督学习的重要性
9.3 开放的问题
10 总结
致谢
参考文献
后折页
::下载地址::
>> 评论